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33 Abstract

34 1. It has been hypothesized that environmentally induced changes to gene body methylation 

35 could facilitate adaptive transgenerational responses to changing environments. 

36 2. We compared patterns of global gene expression (Tag-seq) and gene body methylation  

37 (reduced representation bisulfite sequencing) in 80 eastern oysters (Crassostrea virginica) 

38 from six full-sib families, common gardened for 14 months at two sites in the northern Gulf 

39 of Mexico that differed in mean salinity.  

40 3. At the time of sampling, oysters from the two sites differed in mass by 60% and in parasite 

41 loads by nearly two orders of magnitude. They also differentially expressed 35% of measured 

42 transcripts. However, we observed differential methylation at only 1.4% of potentially 

43 methylated loci in comparisons between individuals from these different environments, and 

44 little correspondence between differential methylation and differential gene expression. 

45 4. Instead, methylation patterns were largely driven by genetic differences among families, with 

46 a PERMANOVA analysis indicating nearly a two orders of magnitude greater number of genes 

47 differentially methylated between families than between environments. 

48 5. An analysis of CpG observed/expected values (CpG O/E ) across the C. virginica genome 

49 showed a distinct bimodal distribution, with genes from the first cluster showing the lower 

50 CpG O/E values, greater methylation, and higher, and more stable gene expression, while 

51 genes from the second cluster showed lower methylation, and lower and more variable gene 

52 expression.  

53 6. Taken together, the differential methylation results suggest that only a small portion of the C. 

54 virginica genome is affected by environmentally induced changes in methylation. At this 

55 point, there is little evidence to suggest that environmentally induced methylation states 

56 would play a leading role in regulating gene expression responses to new environments.

57

58 Introduction

59 Rapid environmental change is putting many species and populations at risk of extinction, and there 

60 is an urgent need to understand which will be most vulnerable. One way to approach this question is 
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61 to quantify the impacts of changing environmental conditions on organismal physiology, and test 

62 how these physiological changes are translated into population and ecosystem level effects of 

63 environmental change. On short time scales, these physiological changes are mediated by 

64 environmentally responsive gene expression (Evans & Hofmann, 2012). Over longer time periods, 

65 and possibly even across generations, these responses may be modulated by changes in the 

66 epigenome (Eirin-Lopez & Putnam, 2019).  If epigenetic changes were stably inherited, they could 

67 add to the more widely recognized effects of evolutionary genetic change in contributing to 

68 phenotypic changes in populations over time. As a result, there is substantial interest in 

69 understanding interactions among epigenetic, genomic and environmental variation, and ultimately, 

70 how changes in the epigenome contribute to environmentally responsive physiology. 

71

72 The links between environmental variation, changes in gene expression, and changes in organismal 

73 physiology are increasingly well documented by comparative transcriptomics studies (Alvarez, 

74 Schrey, & Richards, 2014; DeBiasse & Kelly, 2016). A growing number of studies also document 

75 environmental effects on the epigenome (Dixon, Liao, Bay, & Matz, 2018; Eirin-Lopez & Putnam, 

76 2019), however, the phenotypic consequences of environmental alterations to the epigenome 

77 remain unclear. One of the best studied sources of epigenetic variation is DNA methylation, which in 

78 animals is mostly associated with CpG motifs (Eirin-Lopez & Putnam, 2019). Historically, DNA 

79 methylation has been best studied in mammals, where it is highly dynamic, and implicated in gene 

80 regulation and silencing, genomic imprinting, and X-chromosome inactivation (Bird, 1986; Jones and 

81 Takai, 2001). Invertebrate genomes generally have low levels of methylation, with methylation 

82 tending to be concentrated in gene bodies (introns and exons). In both plants and invertebrates, 

83 genes with higher levels of gene body methylation tend to be more highly and stably expressed, 

84 whereas those with lower levels of methylation tend to show lower, but inducible expression 

85 (Dimond & Roberts, 2016; G. B. Dixon, Bay, & Matz, 2016, 2014a; Gavery & Roberts, 2013; Sarda, 

86 Zeng, Hunt, & Yi, 2012; Zemach & Zilberman, 2010). Some evidence suggests that methylation may 

87 also help to direct alternative splicing of mRNA transcripts (Flores et al., 2012; Neri et al., 2017). 

88 Environmental differences can also produce changes in methylation patterns (Bogan, Johnson, & 

89 Hofmann, 2020; Johnson & Kelly, 2020; Johnson, Sirovy, Casas, La Peyre, & Kelly, 2020) including 

90 convergence in methylation patterns among common-gardened individuals in corals (Dimond & 

91 Roberts, 2020). Other studies have also found evidence for heritable variation in methylation 
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92 patterns (Dimond & Roberts, 2020; Liew et al., 2020; Rondon et al., 2017; Sharma et al., 2021; 

93 Strader, Wong, Kozal, Leach, & Hofmann, 2019). However the critical knowledge gap in this body of 

94 research is that we still know very little about how environmentally induced and heritable differences 

95 in methylation translate into phenotypic effects (McGuigan, Hoffmann, & Sgrò, 2021). Most studies 

96 have failed to document a causal link between gene body methylation and environmentally 

97 responsive regulation of gene expression (Bewick et al., 2016; Bewick, Zhang, Wendte, Zhang, & 

98 Schmitz, 2019; Choi, Lyons, Kim, Moore, & Zilberman, 2020; Harris, Lloyd, Domb, Zilberman, & 

99 Zemach, 2019; Zilberman, 2017). Nevertheless, in the coral Acropora millepora, variation in 

100 methylation was a better predictor of fitness in transplanted corals than either SNPs or gene 

101 expression (Dixon et al., 2018). 

102

103 In this study, we investigated effects of environment and genotype on DNA methylation patterns in 

104 eastern oysters (Crassostrea virginica), and examined the association between methylation and 

105 environmentally induced gene expression. The effect of environmental salinity on oyster physiology 

106 is of particular interest in the northern Gulf of Mexico, where changes in land use and climate are 

107 impacting salinity regimes, driving local declines in oyster populations (La Peyre, Eberline, Soniat, & 

108 La Peyre, 2013; Lowe, Sehlinger, Soniat, & La Peyre, 2017). The role of methylation in environmental 

109 responses of oysters is of particular interest because this species faces a rapidly changing 

110 environment, and epigenetic methylation is a possible mechanism for transgenerational inheritance 

111 of environmentally responsive phenotypes. Our previous work with C. virginica provides evidence 

112 both for environmentally induced methylation differences (Johnson & Kelly, 2020) and for 

113 transgenerational inheritance in oysters, with parental acclimation to sites with differing salinity 

114 conditions contributing to variation in larval traits (Griffiths et al., 2021). 

115

116 As with other traits, the complex links between epigenetic, genetic, and environmental variation can 

117 be disentangled using controlled breeding and common garden experiments (Clark et al., 2018; 

118 Dimond & Roberts, 2020; Putnam, Davidson, & Gates, 2016; Wang et al., 2021). In this study, we 

119 used a family-based approach, with 80 oysters from 6 full-sib families reared in two sites with 

120 differing salinity conditions for 14 months. These oysters were part of a larger study, where we 

121 observed effects of outplant site on growth rates, infection load (Perkinsus marinus parasites), and 

122 global gene expression patterns (Fig. 1, Sirovy et al., 2021). Our approach in this study allowed us to 
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123 test the plasticity of DNA methylation and its association with changes in gene expression in 

124 response to variation in the abiotic environment. Using measurements of methylation and gene 

125 expression made in gill tissue, we quantified variation in DNA methylation between outplant sites, 

126 variation in DNA methylation among families, and the association between DNA methylation and 

127 gene expression. This approach allows us to investigate the genetic vs environmental drivers of DNA 

128 methylation and associated changes in gene expression. We also investigated the methylation history 

129 of individual genes by measuring the distribution of CpG observed/expected ratios (CpG O/E) across 

130 the genome. The CpG O/E ratio will decrease in highly methylated genes over evolutionary time 

131 because methylation is mutagenic and will lead to an increase in C-T transition mutations, decreasing 

132 the CpG O/E ratio(Coulondre, Miller, Farabaugh, & Gilbert, 1978).  

133

134 Our study provides a fine-scaled examination of the joint effects of genotype and environment on 

135 methylation and gene expression in a marine invertebrate reared in two common garden 

136 environments, and our results suggest that the methylome is shaped more strongly by genotype 

137 than by the environment. We observed only a weak connection between environmentally induced 

138 methylation and gene expression, suggesting that changes to the methylome do not play an 

139 important role in directing environmentally responsive gene expression in oysters.

140

141 Methods

142 In May 2016, adult oysters (C. virginica) were collected by dredging from Sister Lake, LA (29˚14’57” 

143 N, 90˚55’16” W, LDWF saltwater collecting permit #1904). These oysters were transported to the 

144 Louisiana Department of Wildlife and Fisheries Michael C. Voisin Oyster Hatchery in Grand Isle, LA 

145 (29°14'20.3" N, 90°00'11.2" W) and placed into off-bottom mesh cages for long-term acclimation. In 

146 October 2016, after six months of acclimation, the oysters were spawned at the MCV oyster hatchery 

147 using 3 males and 2 females. Oyster spat were reared in an upwelling system, individually tagged, 

148 and outplanted in one of three adjustable long-line mesh bags at both the Grand Isle Hatchery farm 

149 and near the Louisiana Universities Marine Consortium (LUMCON) (29°15'12.6" N, 90°39'45.9" W) on 

150 February 20th, 2017.  Because larvae from all six families were combined for culturing, parentage 

151 assignments were unknown at the time of outplant, and as such families were unequally outplanted 

152 between sites. Oysters within each bag were monitored for mortality and cleaned of epibionts 

153 approximately every 3 months over a 14-month period. On April 24th, 2018, after 14-months at the 
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154 two outplant sites, 40 individuals were haphazardly chosen from each site. Shell height of each 

155 individual was measured from shell umbo to distal edge using a digital caliper (ABS Coolant Proof 

156 Calipers, Mituyoto Corporation, Japan). Approximately 1 cm2 piece of gill tissue was sampled in the 

157 field from each individual and preserved with either Invitrogen RNAlater (gene expression) or 95% 

158 ethanol (DNA methylation). The remaining whole animal was placed in a pre-weighed 50 ml test tube 

159 and used to measure wet meat weight and Perkinsus marinus infection intensities. No approval for 

160 from an institutional animal ethics committee was required for this research.

161

162 Gene expression

163 Total RNA was extracted using a E.Z.N.A.® Total RNA Kit I (Omega BIO-TEK Inc., Norcross, GA, USA) 

164 following the manufacturer's instructions. The yield and quantity were initially assessed using a 

165 NanoDrop 2000 spectrophotometer. Total RNA extracted from the 80 individuals was sent to the 

166 University of Texas at Austin’s Genomic Sequencing and Analysis Facility where RNA quality control 

167 was confirmed using a 2100 Agilent Bioanalyzer on a Eukaryote Total RNA Nano chip and libraries 

168 were produced using the Tag-Sequencing approach (Meyer, Aglyamova, & Matz, 2011). The resulting 

169 80 libraries were sequenced on two lanes of an Illumina HiSeq 2500 platform, with 100 base pair 

170 single-end reads. 

171

172 Sequencing reads were trimmed of adapter sequences using Trimmomatic (version 0.39) (Bolger, 

173 Lohse, & Usadel, 2014) and base pairs with quality scores below 30 were removed (Table S2). The 

174 trimmed reads were mapped to the C. virginica reference genome (Gómez-Chiarri, Warren, Guo, & 

175 Proestou, 2015) with known haplotigs removed 

176 (https://github.com/jpuritz/OysterGenomeProject/tree/master/Haplotig_Masked_Genome) using 

177 the single pass option for STAR RNA-seq aligner (version 2.6.0a) (Dobin et al., 2013). Reads were 

178 mapped to gene features with the options (--quantMode GeneCounts --outFilterScoreMinOverLread 

179 0.50 --outFilterMatchNminOverLread 0.50) specified to adjust for poly-A tail contamination. A count 

180 matrix was generated from the ReadsPerGene.out.tab output from STAR. 

181

182 Assigning genotypes from RNAseq reads

183 Genotypes for each individual were called from the RNAseq data using angsd (version 0.931) to 

184 produce an identity-by-state (IBS) matrix that uses probabilistic uncertainty to robustly genotype 
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185 individuals from sequencing reads with variable or low depths of coverage (Korneliussen et al., 2014). 

186 The filters used for assigning IBS scores included removing sites with allele frequency lower than 

187 0.05, requiring a minimum read mapping quality score of 30, a minimum base mapping quality above 

188 20, and removing SNPs with a p-value > 2e-6. These filters allow for high stringency and align with 

189 previously published work that has used ANGSD to assess genotypes in wild populations (Sturm et al., 

190 2020). Genotype clusters were identified by plotting the first two axes from a distance-based 

191 redundancy analysis with the capscale function in the R program vegan (version 2.5-6).

192

193 Methylation

194  We quantified variation in methylation via reduced representation bisulfite sequencing (Van Gurp et 

195 al., 2016) which cost-effectively provides locus-specific methylation states across a large proportion 

196 of the genome (G. Dixon & Matz, 2021; Trigg et al., 2021). DNA was extracted using the OMEGA 

197 E.Z.N.A. Tissue DNA Kit (D3396-01; Omega bio-tek) with a 2 min RNase A digestion to remove co-

198 purified RNA. DNA purity was assessed based on 260/280 and 260/230 ratios using a nanodrop 

199 spectrophotometer (ND1000; Thermofisher Scientific). Presence of high molecular weight DNA was 

200 confirmed using a 1.5 % agarose gel, and DNA concentration was verified using a Qubit 3.0 

201 Fluorometric dsDNA BR assay kit (Q32850; Life Technologies). The epiGBS library preparation 

202 followed previously published methods (Johnson & Kelly, 2020; Van Gurp et al., 2016). Briefly, a total 

203 of 500 ng of purified genomic DNA was double digested using the two frequent cutter enzymes AseI 

204 and NsiI (NEB-R0127L and NEB-R0526L; Van Gurp 2016). Digested DNA was ligated to custom y-

205 yoked methylated sequencing adapters using a T4 DNA ligase (B9000S; New England Biolabs) with 

206 additional rATP to ensure ligation of custom adapters (Glenn et al., 2019). The adapter ligated DNA 

207 was bisulfite converted in a 96 well plate using the Zymo Research EZ DNA Methylation-Lightning kit 

208 (D5031; Zymo Research) with a 15 min L-desulphonation step. This bisulfite converted DNA was 

209 tagged and amplified with Illumina adapters using 16 cycles of PCR. Amplified libraries were size 

210 selected to 300-600 base-pairs (bp) using the Zymo Research Select-A-Size DNA clean & 

211 Concentrator (D4080; Zymo Research). Size selection was confirmed using the Agilent Bioanalyzer 

212 DNA high sensitivity chip (5067-4626; Agilent Technologies). Libraries were pooled and sequenced by 

213 NovoGene Inc (R) with a 10% PhiX spike-in on a full flow cell of the Illumina HiseqX with 100 bp 

214 paired-end reads. 

215
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216 The epiGBS sequencing reads were adapter trimmed and base pairs with a phred score less than 30 

217 were removed using Trimmomatic (version 0.39) (Bolger, Lohse, & Usadel, 2014). Trimmed reads 

218 were mapped to the reference genome (NCBI GCF_002022765.2) and CpG methylation was called 

219 using the software package bismark (v0.19.0) (Krueger and Andrews, 2011). The bismark commands 

220 used in the mapping allowed for 1 mismatch in a seed alignment of 10 with a minimum alignment 

221 score setting of -0.6 (--score_min L, 0, -0.6). These settings were selected to account for genomic 

222 variations between C. virginica collected from the northern Gulf of Mexico (nGOM, this study) and 

223 the disease-resistant inbred line from the U.S. East Coast used for the construction of the reference 

224 genome (Gómez-Chiarri, Guo, Tanguy, He, & Proestou, 2015). CpG methylation was extracted from 

225 the non-deduplicated mapped reads using the bismark command bismark_methylation_extractor 

226 with the following commands; --ignore_r2 2, --bedGraph, --zero_based, --no_overlap, --

227 cytosine_report, and –report. 

228

229 Statistical analysis

230 Differential methylation analysis was conducted using two methods with CpG features collected from 

231 the bismark coverage files imported and analyzed using the R program MethylKit (v.1.2.4) (Akalin et 

232 al., 2012). The first approach focused on CpG methylation using a non-overlapping tiled window 

233 approach with a tile size of 1000 bp (1kb) and a step size of 1kb. The 1kb regions were filtered using 

234 the filterByCoverage command to require coverage greater than 10x in at least 10 individuals. These 

235 tiles were tested for differential methylation in MethylKit.  This approach was used to identify tiles 

236 that were differentially methylated between environments. Results from this analysis were 

237 consolidated to gene level mean percent methylation and tested for functional enrichment using a 

238 Mann-Whiteny U-Test (Wright et al., 2015; https://github. com/z0on/GO_MWU). For this analysis, 

239 the background list for GO enrichment was restricted to only those gene regions for which any 

240 methylation was measured (n=18,773). This method calculates enrichment across three gene 

241 ontology (GO) categories; Molecular Function (MF), Biological Processes (BP), and Cellular 

242 Component (CC). The second approach first measured percent methylation for every CpG captured 

243 in the analysis removing reads that did not have at least 1x coverage for all individuals. These CpG’s 

244 were further filtered into groups to only retain those that overlapped with annotated exons, introns, 

245 promoter regions, or transposable elements. This filtering was conducted using the R package 

246 ‘ChIPpeakAnno’ (Zhu et al., 2010) using the function findOverlapsOfPeaks to find genomic regions 
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247 fully overlapping each annotated element. Genomic regions were converted to Grange objects for 

248 this analysis using he R package ‘GenomicRanges’ (Lawrence et al., 2013).  For each group, the 

249 percent methylation of CpG’s within each of these regions was averaged across all CpG’s present 

250 (and restricted to only include regions that had more than 1 CpG was present, and a variance greater 

251 than 0 across all samples). This dataset was used to identify methylation patterns associated with 

252 genotype, environment, or GxE interaction using a PERMANOVA. This was performed using the R 

253 function ‘adonis2’ within the ‘vegan’ package (version 2.5-6). The PERMANOVA examined the effect 

254 of percent methylation~sire + dam + outplant + sire*outplant + dam*outplant + bag for each group 

255 of genomic features independently with 9,999 permutations. The resulting p-values were then 

256 corrected for multiple comparisons using the benjamini-hochberg method (Benjamini & Hochberg, 

257 1995), and overlap with differential expression data was done by overlapping the peak lists using the 

258 R program ‘ChIPpeakAnno’.

259

260 We also examined the CpG observed/expected (O/E) ratios in order to test the relationship between 

261 CpG O/E, percent methylation, and gene expression. CpG observed ratios were counted for all genes 

262 in the published genome using python scripts written by Dimond and colleagues 

263 https://github.com/jldimond/Coral-CpG (Dimond and Roberts, 2016). The CpG O/E ratios showed the 

264 expected bimodal distribution (Sarda et al., 2012). To understand the significance of these two 

265 groups we separated these genes into either a lower or upper distributions using a k-means 

266 clustering around 2 centers using the R package ‘stats’ (version 4.1.0; R Code Team 2021). Functional 

267 enrichment for each CpG O/E cluster was also tested using a Fishers exact test. Finally, we tested the 

268 association between percent methylation and gene expression with CpG O/E values for each gene 

269 examining each CpG cluster independently. This analysis was also conducted for both level of gene 

270 expression (CPM) and variation in gene expression (coefficient of variation, CV) for the 11,795 genes 

271 with data for both percent methylation and gene expression.

272

273 Differential gene expression was analyzed and described by Sirovy et al., (2021), these methods are 

274 briefly summarized here.  We filtered the gene list using the (filterByExpr) function and normalized 

275 the remaining reads using the trimmed mean of M-values (TMM) normalization method (Robinson & 

276 Oshlack, 2010). Global expression patterns were analyzed using a PCoA conducted with the R 

277 program vegan and Euclidean distances calculated from log2 +1 transformed normalized counts 

278 obtained from the cpm() function in edgeR. Our differential expression analysis used two 
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279 approaches: a pairwise assessment of expression between outplant sites, and a PERMANOVA to 

280 identify genes associated with genotype, environment, or GxE interaction. The pairwise assessment 

281 of differential gene expression between outplant sites (regardless of family) were measured using a 

282 genewise negative binomial generalized linear model implemented in the edgeR package using the 

283 function glmQLFit. Significantly differentially expressed genes (DEGs) were identified based on FDR 

284 rates calculated using benjamini-hochberg method (Benjamini & Hochberg, 1995). Our second 

285 approach used a PERMANOVA performed using the R function ‘adonis2’ within the ‘vegan’ package 

286 (version 2.5-6). For this approach we used the log-transformed counts (cpm) from edgeR as our 

287 count matrix. The PERMANOVA examined the effect of gene expression~sire + dam + outplant + 

288 sire*outplant + dam*outplant +bag  for each gene independently with 105 permutations. The 

289 resulting p-values were corrected using the benjamini-hochberg method (Benjamini & Hochberg, 

290 1995). Functional enrichment of differentially expressed genes and PERMANOVA significant genes 

291 was tested using a Fisher’s Exact Test. This method calculates enrichment across three gene ontology 

292 (GO) categories; Molecular Function (MF), Biological Processes (BP), and Cellular Component (CC).

293
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Grand Isle 101.14 (±1.09) 19.31 (± 0.848) 1.88e05 (± 5.36e05)

294 Figure 1. Environmental data for outplant sites: Louisiana Department of Wildlife and Fisheries 

295 Michael C. Voisin Oyster Hatchery  farm in Grand Isle, LA (29°14'20.3" N, 90°00'11.2" W) and 

296 Louisiana Universities Marine Consortium (LUMCON) (29°15'12.6" N, 90°39'45.9" W), used for 

297 14-month outplant of 80 oysters from six full-sib families used to measure effects of genotype 

298 and environmental conditions on gene expression and genome-wide methylation patterns. 
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299 Phenotypic data (size, weight and infection with Perkinsus marinus) are shown for the time of 

300 collection. 

301

302 Results 

303 Site specific differences in environmental conditions

304 Throughout the duration of the outplant, the two sites experienced similar temperature trends, but 

305 Grand Isle was consistently higher in mean daily salinity (Figure 1). These differences in 

306 environmental conditions (i.e. high freshwater input – LUMCON vs low freshwater input -Grand Isle) 

307 influenced the growth rate and dermo infection intensities leading to more growth but more 

308 infection in Grand Isle (Figure 1). These differences were shown to be statistically significant using a 

309 Kruskal-Wallis Rank Sum test (p-value < 0.05) as described by Sirovey et al., (2021).

310

311 Methylation Sequencing 

312 Methylation sequencing of the 80 individuals was only considered successful for 73 samples with 

313 greater than 2 million reads. These 73 samples had a median of 9.9 million reads per sample after 

314 quality trimming; of these, 84.6% of reads mapped to the reference genome resulting in a median of 

315 8.5 million mapped reads per sample. These reads were distributed across 74,541 1kb tiles that 

316 overlapped a total of 18,773 gene regions. 

317

318 Transcriptome Sequencing 

319 Transcriptome sequencing produced a total of 408 million reads, with an average of 5.1 million reads 

320 per sample. Trimming of those reads led to a final read count of 4.9 million per sample. Star mapping 

321 resulted in 91% of reads mapping to the reference genome distributed across 21,388 gene features. 

322 Test for differential gene expression conducted using edgeR identified 4,525 differentially expressed 

323 genes between sites with 1,871 up-regulated and 2,654 down-regulated genes in Grand Isle . 

324

325 Assigning families

326 Genotypes for each oyster were determined using ANGSD (version 0.931). A total of 6 clusters were 

327 identified using a redundancy analysis that likely represent the parentage of 2 females and 3 males 

328 (supplemental 1).  Unfortunately, distribution of families between sites was not even. This result 

329 allowed us to only examine pairwise differences in DNA methylation between sites, but still allowed 
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330 us to explore the role of genotype and outplant environment on DNA methylation in our non-

331 parametric PERMANOVA analysis. 

332

333 CpG O/E analysis

334 CpG O/E values for the C. virginica genome show a distinct bimodal distribution. Genes from across 

335 the genome were broken into either the lower or upper distributions using a k-means clustering 

336 around 2 centers using the R package stats (Figure 2A). This analysis found a total of 16,726 genes to 

337 be in cluster 1, the leftmost cluster with a mean CpG O/E of 0.421; and, 22,112 genes in cluster 2, the 

338 right most cluster with a mean CpG O/E of 0.837. We explored functional enrichment for each CpG 

339 O/E cluster using a Fishers exact test. This analysis revealed that genes within cluster 1 (n=16,726) 

340 were enriched for 132 gene ontologies across all 3 categories (MF = 46, BP = 82, and CC =4, see 

341 supplemental Figure 2). In contrast, genes within cluster 2 (n=22,112) were only enriched for 10 

342 ontologies across all three categories (MF =5, BP=3, CC=0, see supplemental Figure 3).  

343

344 When we examined the relationship between gene CpG O/E values and percent methylation, we 

345 observed a sharp drop in mean percent methylation between clusters 1 and 2 (Figure 2B).We tested 

346 the association between gene expression and CpG O/E values for both level of expression (CPM) and 

347 variation in expression (coefficient of variation, CV) calculated for each gene from the transcriptomic 

348 data, examining each cluster independently (Figure 2C,D). This analysis showed the expected 

349 association between high methylation and both increased gene expression (CPM) and low variance 

350 (CV) of expression only for cluster 1 genes. This pattern broke down for cluster 2 genes with no 

351 relationship between percent methylation and either level of expression or variation in expression. 
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352

353 Figure 2.  Characteristics of genes in relation to their CpG observed/expected ratios (CpG O/E) across 

354 the C. virginica genome. (A) Histogram showing distribution of CpG O/E values for all genes in the C. 

355 virginica genome, with bimodal distribution identified via k-means clustering. (B) Violin plot showing 

356 distribution of methylation levels across deciles of CpG O/E. (C) Violin plots showing distribution of 

357 methylation levels across levels of expression for each gene (measured via Tag-seq) for each of two 

358 CpG O/E clusters identified via k-means clustering. (D) Violin plots showing distribution of 

359 methylation levels across variation in expression for each gene (measured via Tag-seq) for each of 

360 two CpG O/E clusters identified via k-means clustering. The mean and median methylation and gene 

361 expression data are also available in supplemental table 4.
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362

363 Global Methylation and Expression Patterns

364 We measured variation in both the percent methylation data and the log-transformed gene 

365 expression data with a PERMANOVA. For the methylation data, this analysis was restricted to 1,289 

366 1kb loci that had no missing data for any individual. This approach identified an effect of site (p-value 

367 = 0.048) and family (p-value < 1e-6), no interaction of family-by-site (p-value = 0.595; Figure 3), and 

368 no bag effect (p-value < 0.765). This relationship can be seen along the first two principal 

369 components for the methylation data that describe 12.2 % of the variance (Figure 3). This same 

370 analysis identified a much larger effect of site on gene expression with significant influences of site 

371 (p-value <  1e-6) and family (p-value <  1e-6), but not the interaction of family-by-site (p-value = 0.114) 

372 or bag (p-value =0.14) on global gene expression patterns. This relationship can also be seen along 

373 the first two principal components that described 27.1 % of the variance for the gene expression 

374 data (Figure 3).

375

376 Figure 3: Principal coordinate analysis (PCoA) plot showing distances between samples for 

377 measurements of gene expression and methylation. Colors represent outplant site, full-sib family, 

378 sire or dam.

379 The PERMANOVA results from both DNA methylation and gene expression revealed distinct patterns. 

380 The DNA methylation data revealed a strong relationship between genotypes (sire/dam) and not 

381 outplant site across all four genomic regions tested (exons, introns, promoters, TEs) (Table 2). Across 
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382 all four regions introns and transposable elements were found to have the highest association with 

383 genotype (10-15%) while only 7 CpG’s (across all four genomic regions) were found to be associated 

384 with outplant site. This is in contrast with the gene expression data that found 34.8% of genes (n= 

385 7,454) were associated with outplant site. In addition, the methylated loci among gene body regions 

386 (exons and introns) that showed a significant effect of genotype (n = 1,127), 73.6% (n= 830) were 

387 genes found in CpG O/E cluster 1, representing a significant enrichment for cluster 1 genes (Fisher’s 

388 exact test P<0.0001) This is again different from what was observed in the gene expression data 

389 where only 38.9% of DEGs (n=1,777) were from cluster 1, which was slightly lower than be expected 

390 by chance, given that 43% of genes were found in cluster 1 (Fisher’s exact test, P=0.0003). 

391

392 Table 1.  PERMANOVA results for both DNA methylation and gene expression, testing effects of 

393 outplant site, sire and dam.

394

395

Number Significant

(FDR < 0.05)

Methylation

Exons (n=1,719)

Methylation

Promoters( n=1,585)

Methylation

Introns (n=4,870)

Methylation

TE’s (n=3,444)

Gene Expression

(n=21,395)

Outplant 1 (0.06%) 1 (0.06%) 4 (0.08%) 1 (0.03%) 7454 (34.8%)

Sire 93 (5.4%) 57 (3.6%) 446 (9.2%) 523 (15.2%) 3009 (14.1%)

Dam 98 (5.7%) 74 (4.7%) 490 (10.1%) 451 (13.1%) 1963 (9.2%)

Sire_x_Outplant 2 (0.12%) 0 0 1 0

Dam_x_Outplant 0 0 0 0 0

Mean R2 of Significant

(FDR<0.05)

Methylation

Exons (n=1,719)

Methylation

Promoters( n=1,585)

Methylation

Introns (n=4,870)

Methylation

TE’s (n=3,444)

Gene Expression

(n=21,395)

Outplant 0.201 0.195 0.179 0.143 0.214

Sire 0.243 0.243 0.212 0.206 0.147

Dam 0.168 0.184 0.171 0.167 0.173

Sire_x_Outplant 0.184 0 0 0.292 0

Dam_x_Outplant 0 0 0 0 0

396

397 Differential Methylation: High vs Low Salinity

398 Differential methylation analysis between outplant sites (regardless of genotype) identified 1,039 

399 differentially methylated 1kb tiled loci with at least a 20% difference in methylation and an adjusted 

400 p-value (q-value) less than 0.05. These regions represent approximately 1.4% of the potential 

401 methylated tiles in the genome and were distributed across 730 genes. Functional enrichment of 

402 these genes identified 53 enriched terms (35 MF, 16 BP, and 2 CC, see supplemental Figure 4). 
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403 Interestingly, 441 of these differentially methylated genes were hypermethylated in the low salinity 

404 site compared to the high salinity site and 520 (71%) were found in cluster 1, characterized by a low 

405 CpG O/E ratio (cluster, Figure 2a). This represents a significant enrichment for cluster 1 genes, given 

406 that cluster 1 makes up only 43% of the genome (Fisher’s exact test P<0.001). Comparing the 

407 differential gene expression results from edgeR to the differential methylation results identified 16 

408 genes that were both differentially methylated and differentially expressed (Table 1). All of the 16 

409 genes were found to be hypermethylated in the low salinity site, but differential expression was 

410 found to be downregulated for 5 of the 16 genes. This overlap between differentially methylated and 

411 differentially expressed genes was no greater than expected by chance (Fisher’s exact test P>0.05).

412

413 Table 2. Gene IDs, percent methylation, and change in expression for 16 transcripts that were both 

414 differentially methylated and differentially expressed between outplant sites. The direction of 

415 differential expression and methylation are comparisons of low salinity vs high salinity, with positive 

416 values indicating greater methylation and/or expression at the low salinity site.

417

Gene ID
Protein name

Percent Methylation

Difference

Methylation

qvalue

Expression

logFold Change

Expression

FDR

LOC111100600 protein RFT1 homolog isoform X2 +21.5 0.0E+00 +1.71 2.9E-19

LOC111103668 hsp90 co-chaperone Cdc37-like +25.1 1.2E-13 +1.03 5.5E-14

LOC111104123 gastric triacylglycerol lipase-like +22.3 1.4E-117 +1.05 1.0E-07

LOC111106173 pre-mRNA-splicing factor ISY1 homolog +22.7 7.2E-34 +1.03 1.2E-10

LOC111108356 serine/threonine-protein phosphatase 4 regulatory subunit 2-A-like +22.0 1.9E-204 +1.07 2.2E-11

LOC111108404 heat shock 70 kDa protein 12A-like +22.8 2.0E-175 -1.00 3.0E-03

LOC111109620 nudix hydrolase 20, chloroplastic-like +45.2 3.4E-285 +1.42 1.4E-11

LOC111112920 4-trimethylaminobutyraldehyde dehydrogenase-like +23.4 1.6E-23 +1.53 1.9E-10

LOC111115975 protein disulfide-isomerase A6-like +21.6 1.3E-204 -1.42 1.2E-08

LOC111122305 LOW QUALITY PROTEIN: ferric-chelate reductase 1-like +20.4 4.9E-91 -1.31 1.1E-02

LOC111126139 LOW QUALITY PROTEIN: tumor protein D54-like +20.1 6.5E-28 +1.52 5.6E-16

LOC111134504 uncharacterized protein LOC111134504 isoform X2 +20.3 2.4E-19 -1.01 3.6E-02

LOC111135004 uncharacterized protein LOC111135004 isoform X2 +27.1 0.0E+00 +1.60 3.6E-17

LOC111136020 proline dehydrogenase 1, mitochondrial-like isoform X4 +30.5 3.8E-14 +1.96 3.1E-16

LOC111136399 delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial-like +25.1 0.0E+00 +1.19 3.0E-10

LOC111136652 multidrug resistance-associated protein 4-like +27.5 6.7E-272 -1.05 1.5E-03

418

419 Discussion

420 Changes in DNA methylation have been proposed as a mechanism for long-term environmental 

421 acclimation and transgenerational plasticity, however the precise influence of the environment on 

422 DNA methylation, and the phenotypic consequences of this epigenomic modification are unclear for 

423 most species. We subjected six full-sib families of eastern oysters to common garden acclimation 
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424 under divergent field conditions and observed large differences in gene expression, growth, and 

425 disease prevalence, but relatively modest modifications to the methylome. Instead, we found that 

426 patterns of methylation were largely driven by genotype, and showed little correspondence to the 

427 environmentally responsive differences in gene expression. 

428

429 Changes in Methylation Do Not Direct Environmentally Responsive Gene Expression.

430 We observed only a weak connection between environmentally induced methylation and 

431 environmentally-responsive gene expression. While there were 4,525 differentially expressed (DE) 

432 genes and 730 differentially methylated (DM) genes between sites, the overlap between these two 

433 sets was only 16 genes, which is no greater than would be expected by chance. Our results are in line 

434 with a similar analysis of differentially expressed and methylated genes between intertidal and 

435 subtidal Pacific oysters, where only 13% of genes that were DE were also DM (Wang et al., 2021). 

436 Similarly, methylation changes induced by ocean acidification conditions in eastern oysters were 

437 small, and uncorrelated with changes in gene expression under the same conditions (Downey-Wall et 

438 al., 2020). This trend also has been observed in the purple sea urchin (Strongylocentrotus purpuratus) 

439 where there were small overlaps between genes showing differential methylation and differential 

440 expression for either maternal environment (12 of 136 differentially methylated genes also 

441 differentially expressed) or developmental environment (22 of 136 differentially methylated genes 

442 also differentially expressed; Strader et al. 2020).

443

444 Nevertheless, there were a number of notable genes that fell into the list of DE/DM overlap in our 

445 study. Two of the DE/DM genes, proline dehydrogenase and pyrroline dehydrogenase, are part of a 

446 free amino acid metabolic pathway known to be heavily involved in cell volume regulation during 

447 salinity stress in oysters (Meng et al., 2013). Another DM/DE gene was a serine/threonine 

448 phosphatase, which is part of a pathway involved in response to immune challenge in C. gigas 

449 (Nguyen, Alfaro, & Merien, 2019). This gene was also one of only eight observed to be differentially 

450 methylated between natural populations of oysters that differed in Perkinsus disease pressure, with 

451 hypermethylation of this gene in the site with greater disease pressure (Johnson & Kelly, 2020). 

452 Finally, two of the 16 DE/DM genes were heat shock proteins, which were also heavily represented 

453 among the genes that were both DE and DM in a comparison between tidal regions in Pacific oysters 

454 (Wang et al., 2021). 

455
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456 Methylation Is Heritable

457 Our analysis indicates that genotype has a much stronger effect than the environment in shaping 

458 variation in oyster methylomes, with the number of differentially methylated loci between offspring 

459 of different parents (dam or sire) being two orders of magnitude greater than between 

460 environments. To our knowledge, ours is one of only a few studies to directly compare genetic vs. 

461 environmental influences on CpG methylation patterns in any invertebrate (but see Dixon et al., 

462 2018; Yagound et al., 2019, Hearn et al., 2021). However, our results are in line with data from 

463 humans, where variation in CpG methylation is under strong genetic control, with a higher 

464 heritability for variation in methylation than for variation in gene expression (McRae et al., 2014).

465

466 More Differential Methylation in TEs and Introns

467 The largest number of loci that were differentially methylated among genotypes fell into introns and 

468 transposable elements (TEs). This is consistent with what is likely to be the most important function 

469 of methylation in metazoans: control of alternative splicing and suppression of TEs (Dahlet et al., 

470 2020; Mlura et al., 2001). Our results are consistent with results from C. gigas, where differential 

471 methylation between families is concentrated in TEs (Olson & Roberts, 2015). The role of differential 

472 methylation in TE suppression seems to be taxonomically variable: for example there is currently 

473 little evidence to support differential methylation of TEs in insects (Glastad et al., 2019). In addition, 

474 previous work has found that exon methylation is positively correlated with inclusion in mRNA 

475 transcripts in C. gigas (Song, Li, & Zhang, 2017), and while our data does not find an association 

476 between differential gene expression and differential methylation, our TAG-seq approach for 

477 measuring gene expression does not allow us to detect alternative splicing events that may be 

478 occurring.

479

480 Given that the suppression of TEs is expected to be beneficial, it is somewhat puzzling that we 

481 observed variation in the methylation of TEs among families, since positive selection should tend to 

482 fix beneficial heritable methylation patterns over time. One possibility is that due to their high 

483 mutation rates, methylation states of TEs are in a state of flux: as new TEs form, there is selection for 

484 epimutations to suppress them, but the newest TEs in the genome have not yet fixed those 

485 beneficial epimutations, leading to a concentration of segregating epimutations on TEs.

486

487 Higher Methylation, and Higher and More Stable Gene Expression For CpG O/E Cluster 1
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488 Across the C. virginica genome, CpG O/E values  followed a bimodal distribution, a pattern that has 

489 been observed in many taxa, including other marine invertebrates (Bogan et al., 2020; Dimond & 

490 Roberts, 2016; G. B. Dixon, Bay, & Matz, 2014b). Cluster 1, which contained 43% of the genes, was 

491 characterized by higher levels of methylation and higher and more stable gene expression, while 

492 cluster 2, with 57% of the genes had lower methylation and lower and more variable gene 

493 expression. A strong positive correlation between gene body methylation, and higher and more 

494 stable gene expression has been observed across many taxa, including Pacific oysters (Gavery & 

495 Roberts, 2013; Wang et al., 2021). What is striking in our results is that methylation, gene expression 

496 and expression variation do not decline continuously in relation to CpG O/E values. Instead, the 

497 shape of this relationship is sigmoidal with a sharp decline in all three metrics between clusters. The 

498 previously observed positive correlation between methylation and the level and stability of gene 

499 expression is in fact only evident in cluster 1, which represents fewer than half of the genes in the C. 

500 virginica genome. Taken together, the bimodal CpG O/E ratios and the distinctive gene expression 

501 patterns of cluster 1 and 2 suggest that these clusters represent two distinct categories of genes.  

502 Methylation is mutagenic, with an increase in C-T transition mutations at methylated sites leading to 

503 a decrease in the CpG O/E ratio over time in more highly methylated genes (Coulondre, Miller, 

504 Farabaugh, & Gilbert, 1978). Thus, the lower CpG O/E ratio in cluster 1 is a signature of the higher 

505 average methylation of these gene over evolutionary time.  

506

507 Conclusion

508 There has been substantial excitement in recent years about the potential for epigenetic DNA 

509 methylation to facilitate adaptive transgenerational responses to changing environments, leading 

510 some to call for the inclusion of epigenetic data in conservation plans. However, our results cause us 

511 to be skeptical that DNA methylation data will provide useful information about physiological 

512 responses to environmental change in oysters. Salinity is the most important environmental variable 

513 shaping oyster growth and health in the northern gulf of Mexico. As a result, oysters common 

514 gardened for 14 months at the two sites used in this study differed in size by 60% and in parasite 

515 loads by nearly two orders of magnitude. At the time of sampling, they differentially expressed 35% 

516 of their genes. All of these measurements indicate that oysters experience these two sites as very 

517 different environments. And yet we observed differential methylation between environments at only 

518 1.4% of potentially methylated loci and little connection between differential methylation and 
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519 differential gene expression. Instead, methylation patterns were largely driven by genetic differences 

520 among families. Furthermore, the bimodal clustering of CpG O/E ratios suggest that methylation 

521 states for most of the genome have been stable over evolutionary time. While these changes in DNA 

522 methylation may play a role in alternative splicing or possibly interact with other epigenetic features; 

523 at this point, there is little evidence to suggest that environmentally induced methylation states, if 

524 they occur in oysters, would have appreciable transgenerational effects on gene expression.
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